$y = \sin x$

1. Complete the table of values for $y = \sin x$. Round answers to 2 places if necessary. Then graph the points accurately on the grid provided. Use increments of $\pi/6$ on the xaxis and 0.2 on the y-axis. Do not connect the points yet.

2. Use your calculator to graph $y = \sin x$ using **radian** mode and the following window:

X_{min} $= -2\pi$ $= 2\pi$ X_{max} $= \pi/6$ x_{scl} = -1 **y**_{min} $y_{max} = 1$ = 0.2y_{scl}

Use the graph on your calculator to h above. Now connect the points.

 $y = \sin x$ is a **periodic** and **sinusoida** both directions. We will be studying this function and transformations during this unit.

3. Complete the following based on the graph of $y = \sin x$:

Amplitude:	Domain:
Period:	Range:
Max:	x-int(s):
Min:	y-int(s):
Sin. Axis:	"Starting Point":

help you complete the graph you star	rted in p	art 1
al function whose graph continues in	ndefinitel	y in

Now graph $y = \sin x$ in **degree** mode on your calculator. What would be an appropriate window?

x	У
0	
$\pi/6$	
$\pi/3$	
$\pi/2$	
$\frac{2\pi}{3}$	
$\frac{5\pi}{6}$	
π	
$^{7\pi}/_{6}$	
$4\pi/_{3}$	
$3\pi/_{2}$	
$5\pi/3$	
$\frac{11\pi}{6}$	

 2π

1. Complete the table of values for $y = \cos x$. Round answers to 2 places if necessary. Then graph the points accurately on the grid provided. Use increments of $\frac{\pi}{6}$ on the x-axis and 0.2 on the y-axis. Do not connect the points yet.

2. Use your calculator to graph $y = \cos x$ using **radian** mode and the following window:

 $x_{\min} = -2\pi$ $x_{\max} = 2\pi$ $x_{scl} = \frac{\pi}{6}$ $y_{\min} = -1$ $y_{\max} = 1$ $y_{scl} = 0.2$

Use the graph on your calculator to help you complete the graph you started in part 1 above. Now connect the points.

 $y = \cos x$ is a **periodic** and **sinusoidal** function whose graph continues indefinitely in both directions. We will be studying this function and transformations during this unit.

3. Complete the following based on the graph of $y = \cos x$:

Amplitude:	Domain:
Period:	Range:
Max:	x-int(s):
Min:	y-int(s):
Sin. Axis:	"Starting Point":

Now graph $y = \cos x$ in **degree** mode on your calculator. What would be an appropriate window?

л	y
0	
$\pi/6$	
$\pi/3$	
$\pi/2$	
$2\pi/_{2}$	
$\frac{5\pi}{6}$	
π	
$^{7\pi}/_{6}$	
$4\pi/_{2}$	
$3\pi/2$	
$5\pi/2$	
$\frac{73}{11\pi/6}$	
2π	

х

v