$y=\sin x$

1. Complete the table of values for $y=\sin x$. Round answers to 2 places if necessary. Then graph the points accurately on the grid provided. Use increments of $\pi / 6$ on the x axis and 0.2 on the y-axis. Do not connect the points yet.

2. Use your calculator to graph $y=\sin x$ using radian mode and the following window:

$$
\begin{aligned}
\mathrm{x}_{\min } & =-2 \pi \\
\mathrm{x}_{\max } & =2 \pi \\
\mathrm{x}_{\mathrm{scl}} & =\pi / 6 \\
\mathrm{y}_{\min } & =-1 \\
\mathrm{y}_{\max } & =1 \\
\mathrm{y}_{\mathrm{scl}} & =0.2
\end{aligned}
$$

Use the graph on your calculator to help you complete the graph you started in part 1 above. Now connect the points.
$y=\sin x$ is a periodic and sinusoidal function whose graph continues indefinitely in both directions. We will be studying this function and transformations during this unit.
3. Complete the following based on the graph of $y=\sin x$:

Amplitude: \qquad
Period: \qquad
Max: \qquad
Min: \qquad
Sin. Axis: \qquad
Domain: \qquad
Range: \qquad
x-int(s): \qquad
y-int(s): \qquad
"Starting Point": \qquad

Now graph $y=\sin x$ in degree mode on your calculator. What would be an appropriate window?

$$
y=\cos x
$$

1. Complete the table of values for $y=\cos x$. Round answers to 2 places if necessary. Then graph the points accurately on the grid provided. Use increments of $\pi / 6$ on the x axis and 0.2 on the y-axis. Do not connect the points yet.

2. Use your calculator to graph $y=\cos x$ using radian mode and the following window:

$$
\begin{array}{ll}
\mathrm{x}_{\min } & =-2 \pi \\
\mathrm{x}_{\max } & =2 \pi \\
\mathrm{x}_{\mathrm{scl}} & =\pi / 6 \\
\mathrm{y}_{\min } & =-1 \\
\mathrm{y}_{\max } & =1 \\
\mathrm{y}_{\mathrm{scl}} & =0.2
\end{array}
$$

Use the graph on your calculator to help you complete the graph you started in part 1 above. Now connect the points.
$y=\cos x$ is a periodic and sinusoidal function whose graph continues indefinitely in both directions. We will be studying this function and transformations during this unit.
3. Complete the following based on the graph of $y=\cos x$:

Amplitude: \qquad
Period: \qquad

Max: \qquad
Min: \qquad
Sin. Axis: \qquad

Now graph $y=\cos x$ in degree mode on your calculator. What would be an appropriate window?

